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We consider the dynamics when traveling pulses encounter heterogeneities in a three-component reaction
diffusion system of one-activator—two-inhibitor type, which typically arises as a qualitative model of a gas-
discharge system. We focused on the case where one of the kinetic coefficients changes similar to a smoothed
step function, which is basic for more general heterogeneity as in periodic or random media. Since the
heterogeneity is introduced to the kinetic part in an additive way, it causes the system to produce various types
of localized structures smoothing the jump heterogeneity called the defects at the jump point, which makes a
sharp contrast with the multiplicative heterogeneous case for the Gray-Scott model. The main issue is to study
the collision dynamics between traveling pulses and defects, and show that their global bifurcation structure
plays a key role in clarifying the underlying mechanism. Five outputs are observed after collisions including
annihilation, rebound, and pinning. Unstable steady states are identified as separators between two different
dynamic regimes: penetration and rebound, the role of which is very close to that of scattors arising in collision
process. An organizing center producing the traveling pulses, defects, and scattors via unfolding with respect to

the parameters is also presented.

DOI: 10.1103/PhysRevE.75.036220

I. INTRODUCTION

Spatially localized patterns such as pulses and spots are
fundamental objects arising in many dissipative systems, see,
e.g., Refs. [1-7]. One of the recent remarkable discoveries is
that there is a class of localized patterns which displays a
variety of dynamics such as elastic ball-like behaviors upon
collision, self-replication, self-destruction, and spatiotempo-
ral chaos [8-22]. This makes a sharp contrast with well-
known classical excitable waves as in the FitzHugh-Nagumo
(FHN) equations in which annihilation is typically observed
upon collision [23].

One of the origins of such rich behaviors is that the pulses
have potential instabilities that display a variety of dynamics
when parameters are tuned appropriately. For instance,
saddle-node structure causes self-replication [24] or self-
destruction [25], and drift bifurcation is responsible for the
onset of traveling motion. Moreover a singularity of codim 2
type, i.e., a system has a parameter where multiple bifurca-
tions simultaneously occur, is known to be responsible for
the variety of outputs for scattering process [14,15,26].

Here we explore numerically the pulse dynamics when
the media is changed from homogeneous to heterogeneous,
especially focused on the case where one of the kinetic co-
efficients changes similar to a smoothed step function as in
Eq. (2). Although this heterogeneity of jump type looks spe-
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cial, all the key features of the subsequent results including
the defect structure, diversity of the outputs, and structure of
the organizing center remain the same for the class of steep
heterogeneity of jump type [i.e., large y for Eq. (2)] up to
step function with discontinuity. Note that the pulses treated
here are asymptotically stable in homogeneous media, how-
ever we assume that the associated parameter values are lo-
cated close to the singularities such as drift, saddle-node, and
Hopf bifurcations. One of the consequences of this assump-
tion is the enhancement of sensitivity to the perturbations:
for instance, if there is a traveling pulse close to the drift
bifurcation, i.e., the onset of transition from standing pulse to
traveling one. its profile is almost symmetric and easy to
deform from the right-going pulse to the left-going one by
the external perturbations, which actually occurs when two
slowly traveling pulses collide, interact weakly, and bounce
off [10]. A similar thing occurs when the pulse encounters
the heterogeneity as will be discussed in Sec. III, and much
more exotic dynamics are created than the well-studied case
for the FHN equations [27-29] and the front case [30-34].
To be specific, we employ the three-component reaction
diffusion system of Eq. (1) as a representative model and
consider the case in which one of the kinetic parameters k;
changes abruptly around a point. The model system (1) was
derived phenomenologically from gas discharge experiments
[1,35] in which a variety of spot dynamics including split-
ting, clustering, and other complex dynamics are observed.
Our previous paper [36] discusses a similar problem as
above for the Gray-Scott (GS) model and showed various
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pulse dynamics including rebound and splitting depending
on the height and slope of the heterogeneity for the removal
rate k. A big difference between the GS model and the three-
component model (1) is the dependency of the background
state on the kinetic parameter. Here the background state is
the rest state for a monostable system after introducing het-
erogeneity. For the GS model, background state (1, 0) is
independent of k, therefore it remains a common constant
state before and after the jump point. On the other hand,
since heterogeneity is introduced in an additive way for Eq.
(1), there are no such common constant states for our system.
Therefore it is not a priori clear that there exists a smooth
stable background state connecting two different constant
states on the whole region called the defect; in fact, it is not
always the case (see Sec. VII). Such defects, if exist, turn out
to be coexistent in general for a fixed set of parameters. We
particularly focus on the case that the traveling pulse collides
with the small defect introduced in Sec. IV. The defect
branch consisting of its global continuation with respect to
the height of the jump and k,; plays a key role to understand
the output when the pulse hits the heterogeneity.

When the heterogeneity is spatially localized similar to a
Gaussian distribution, heterogeneity-induced stationary and
oscillatory patterns were studied in detail by Refs. [34,37]
for the Fitzhugh-Nagumo system and integrodifferential
equations. They found several interesting heterogeneity-
induced bifurcations including a pulse generator, however
they did not consider how the traveling pulses interact with
those structures. The main theme of this paper is first to
study existence and stability of defects, and secondly to in-
vestigate the dynamics of traveling pulses of Eq. (1) that
encounter with the defects created by the heterogeneities of
jump type. There are five different outputs depending on the
parameters: penetration, rebound, annihilation, oscillation,
and steady state. A remarkable thing is that there are unstable
steady states which act as separators near the boundary of
penetration-rebound regions. The role of them is exactly the
same as scattors for the case of head-on collisions of two
traveling pulses discussed by Refs. [14,15]. Moreover we
show that those unstable patterns can be obtained as a global
continuation of defects with respect to the jump size.

The paper is organized as follows. In Sec. II, we introduce
our model system. In Sec. III, existence and stability proper-
ties of standing and traveling pulses are studied for the ho-
mogeneous case. We introduce the heterogeneity in Sec. IV
and show the existence of heterogeneity-induced defects.
Phase diagram of collision dynamics between traveling pulse
and small defect is presented. In Sec. V, we study how col-
lision dynamics is controlled by unstable defects with the aid
of careful numerics around the transition points of outputs.
In Sec. VI, an organizing center for the dynamics in hetero-
geneous media is presented, which produces all the impor-
tant objects including standing and traveling pulses, and de-
fects via unfolding. The organizing center is, loosely
speaking, a merging point of saddle-node, Hopf, and drift
bifurcations located on the defect branch. We conclude the
discussions in Sec. VII and present several open questions
including a pulse generator induced by heterogeneity.
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II. MODEL SYSTEM

In order to investigate the dynamics of traveling pulses in
heterogeneous media, we employ the following three-
component reaction diffusion system (1), which was pro-
posed as a qualitative model of gas discharge phenomena

[3]:

u, =D, Au+ kyu — u? — kyv — kyw + ky,
T,=D,Av+u-v,

w, =D, Aw+u—w, (1)

where A is the Laplacian, wu=u(t,x), v=v(t,x), and
w=w(t,x) depend on time ¢ and x € R', k;, k,, k5, and k, are
kinetic parameters, 7 and the diffusion coefficients D,, D,,
D,, are positive constants. In view of the nonlinearity, Eq. (1)
can be regarded as a generalization of the well-known
Bonhoeffer—van der Pol kinetics to the three component sys-
tem by adding the second inhibitor w. The third component
w is indispensable for the coexistence of multiple number of
stable traveling spots in higher dimensional spaces. The sys-
tem (1) is simple and a prototypical model for the study of
interaction among moving particle patterns in dissipative
systems. Note that there is a variant of Eq. (1) in Ref. [38]
for the case where total change is conserved. We employ the
following parameter values in the subsequent sections
k=2.0, k=10, k=85, (D,.,D,,D,)=(0.9X107*,
1.0X1073,1.0X 107) and only two parameters (k;,7) are
varied. The kinetic ODE part of Eq. (1) has, in general, three
critical points Uy=(ug,vq,w) satisfying uy=vy=w,. We as-
sume in this paper that k; varies only in the interval
[-7.0,-6.0], which guarantees that the Kinetic system has a
unique stable critical point Uy, i.e., Eq. (1) is monostable.
More precisely the bifurcation diagram of the kinetic system
is obtained by using the AUTO software [39] as shown in
Fig. 1, in which the gray-colored area is the region we are
concerned with.

III. HOMOGENEOUS MEDIA

In order to study the pulse dynamics in heterogeneous
media, we need to know the existence and stability proper-
ties of traveling pulses in homogeneous media. Traveling
pulses typically emerge from standing ones via drift bifurca-
tion, so that location of standing pulses in a parameter space
and the detection of drift bifurcation are the basic things to
do. Figure 2 shows the typical observable patterns of Eq. (1)
in two-dimensional parameter space (k;,7) starting from a
spatially localized initial condition. There are three different
regimes: standing pulses (light gray), traveling pulses (dark
gray), and ground states (black). The ground state means that
the solution goes to the unique constant state U,. Note that
the ground state always exists as one of the stable solutions
in this parameter range. The structure of steady state solu-
tions is independent of 7 except the stability properties, in
fact the location of the saddle-node (SN) point (solid white
line in Fig. 2 at k; =-6.80) for the standing pulse branch
does not depend on 7. On the other hand, locations of the
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FIG. 1. Bifurcation diagram of the kinetic part of the model
system (1): Solid and gray lines stand for the stable and unstable
branch of the critical points. White squares show the location of the
Hopf bifurcation points at |k;|=4.5. Filled circles stand for the
maximum and minimum values of stable periodic motion. The gray
strip indicates the range of k; parameter [-7.0,—6.0] studied here,
which is part of the monostable region.

Hopf and drift bifurcations on it depend on 7, although the
Hopf line (white broken line around k; = —6.73) looks almost
similar to a straight line. Stable standing pulse solutions exist
in the right-low region of Fig. 2, but they are destabilized by
the Hopf bifurcation as k; is decreased before reaching the
saddle-node line. The boundary between standing and trav-
eling regions coincides with a part of the drift bifurcation
(white dotted) line for the standing pulse. In fact, stable trav-
eling pulses emanate supercritically from the boundary line.
As ky is decreased, the drift line intersects with the Hopf line

Ground

-7.0 -6.8 -6.6 -6.4 -6.2 -6.0

FIG. 2. Phase diagram in the (k;,7) plane for homogeneous
system. The dark and light gray regions indicate stable traveling and
standing pulses, respectively. The black region denotes the ground
constant state, i.e., there are no pulses. Triple junction of these three
regions is located around (—6.73,39.3). The vertical broken (solid)
white line stands for the Hopf (saddle-node) bifurcation of the
standing pulse. The dotted white line stands for the drift bifurcation
which intersects with the Hopf line at DH of codim 2 point. Note
that the triple junction point coincides with the codim 2 point DH.
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FIG. 3. (a) The propagating velocity of traveling pulse as a
function of k; for 7=40.0. Solid and gray lines indicate stable and
unstable solutions, respectively. (b) Global bifurcation diagram for
standing and traveling pulses in homogeneous media. The ordinate
L? stands for the integral norm of square of u. The upper branch
stands for the traveling pulses of (a) emanating from the standing
pulse branch (gray line) via the drift bifurcation (filled square).
Inset: saddle-node bifurcation (filled circle) occurs for the standing
pulse branch at k; =—6.80. The white and filled square represent the
Hopf and drift bifurcation points at k;=~—6.73 and —6.79, respec-
tively. Schematic behaviors of eigenvalues for standing pulse are
also depicted along the branch.

at (—6.73,39.3) and can be extended up to the SN line. The
intersection is a codim 2 point and denoted by DH. After
crossing DH (7>DH), the drift bifurcation becomes subcriti-
cal [see Fig. 3(a) for 7=40.0] so that it is no more a part of
the boundary of traveling pulse region. As shown in Fig. 3,
traveling pulse recovers its stability via the Hopf bifurcation.
This implies that the boundary of the existence of stable
traveling pulses on the left side of DH is taken over by this
Hopf recovery line. The DH point turns out to be a triple-
junction of these three dynamic regimes. Note that the veloc-
ity of traveling pulses near DH is very small. Figure 3(b)
shows a global bifurcation diagram of standing and traveling
pulses with respect to k; at 7=40.0 slightly above the DH
point. The Hopf (white square) and drift (filled square) bifur-
cation points on the standing pulse branch are located at
ky=-6.73 and —6.79, respectively. The profile of the Hopf
eigenfunction @, at k; =-6.79 is depicted in Fig. 4(b) and its
eigenvalue is computed as A;=0.080+0.012i. The Hopf
eigenmode @, suggests the up-down motion of the pulse. On
the other hand, the drift eigenmode W, implies the distortion
of the symmetric standing pulse leading to left-right going
pulse. The deformation vector WV, is obtained by solving the
generalized eigenvalue problem. Schematic behaviors of ei-
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FIG. 4. (a) The profile of the unstable standing pulse at the drift
point in Fig. 3 (k;=-6.79 denoted by the filled square). There are
two unstable modes: one is Hopf and the other is drift one [see the
inset of Fig. 3(b)]. The associate eigenfunctions ®; and WV, are
depicted in (b) and (c), respectively. The solid, gray and dotted lines
corresponds to the u, v, and w component, respectively. The gener-
alized eigenfunction W, is obtained by solving LW,=-®, where
@, is the Goldstone mode, i.e., the spatial derivative of standing
pulse (a). Schematic behaviors of eigenvalues for standing pulse are
also depicted along the branch in the inset of Fig. 3(b).

genvalues for standing pulse are also depicted along the
branch of Fig. 3(b). The white (filled) circle means the up-
down (left-right) eigenvalue in the complex plane. Note that
there always exists a translation zero eigenvalue at the origin.
A pair of complex eigenvalues falls into the real axis before
the SN point and one of them is responsible for the occur-
rence of saddle-node bifurcation. The recovery mechanism
of the traveling pulse branch due to the Hopf bifurcation
[located at k; =—6.78 in Fig. 3(b)] results from the unfolding
of the codim 2 point DH for the standing pulse branch. More
detailed discussions will be reported in Ref. [26].

IV. HETEROGENEOUS MEDIA

We introduce a smooth heterogeneity to the parameter k;
of Eq. (1) in the following way:

€
ey (x) = ki + == )
where €= k]f —kf is the height of the jump. From numerical
point of view, we can basically set k;(0)=k% and k(L)=k¥
for an appropriate system size L with Neumann boundary
condition. The parameter 7y controls the steepness of the
slope of k; around the point x=L/2. If the parameter vy ap-
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FIG. 5. (a) Schematic picture of initial conditions for heteroge-
neous case. Solid line shows how k;(x) changes in spatial direction,
and gray line displays a manner how a traveling pulse hits small
stable defect from left side. The profiles of small and large defect
for (kk,k®)=(~6.75,-6.35) are depicted in (b) and (c). The solid,
gray and dotted lines indicate the u, v, and w component,
respectively.

proaches +%, k;(x) becomes a step function. In this paper we
only consider a steep case (close to a jump discontinuity)
with employing y=100 hereafter. The pair of parameters
(kL,kIf) [or, equivalently, (kf,e)] is used to specify our
heterogeneous system, all the other parameters are fixed as
mentioned in Sec. II. We use the Crank-Nicolson method to
solve the model (1) with system size L=4.0, grid size
Ox=1.0X 1073, 6:=0.02, and 7=40.0 unless otherwise stated.

A. Heterogeneity-induced defects

The constant background state U, is no more a rest state
after introducing the heterogeneity (2) as in Fig. 5(a), since
the critical points associated with &} and kf are different. The
existence of smooth stationary states connecting two critical
points (i.e., heteroclinic orbits) is not a trivial question, in
fact there are multiple solutions and their stability properties
depend on k%, € and 7 as will be discussed in subsequent
sections. Solving Eq. (1) with appropriate initial data, we
found that there are two types of heteroclinic orbits for
(K, k) =(~6.75,-6.35) called defects: small and large ones
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as shown in Figs. 5(b) and 5(c), which are both locally
stable.

In this paper we investigate the dynamics when the
traveling pulse encounters a small defect in the parameter
space in which both k} and k¥ belong to the interval of
[-6.75,-6.35], where stable traveling pulses and stable small
defects coexist. It is not always the case that two types of
stable defects exist in the above parameter regime, in fact, as
we will see in Sec. VI, the large defect does not exist for
smaller k; when e is small.

B. Phase diagram for collision dynamics of traveling pulses
with small defects

In order to make a collision experiment, we first construct
a small defect around the jump point, then put a stable trav-
eling pulse far left from the location of the small defect as
schematically shown in Fig. 5. Since both traveling pulse and
small defect decay exponentially, they do not interfere when
the system size L is reasonably large. The outputs of colli-
sions are classified as in the phase diagram of Fig. 6(d) de-
pending on two parameters (kf ,k’f). The broken line in the
middle stands for the homogeneous case where ki=k¥. The
upper area of it is the jump-up case of €>0 and the lower
part is the jump-down case of €<<0. Recall that the pulse is
heading to the good environment for €>0 in the sense that
traveling velocity is larger in the right region. There are five
different outputs: annihilation [Fig. 6(a)], rebound [Figs. 6(b)
and 6(e)], penetration [Fig. 6(c)], oscillatory pulse [Fig. 6(f)]
and stationary pulse [Fig. 6(g)], depending on the set of
(kT k7).

As is expected, penetration occurs when the difference |€|
is small, i.e., pulses can go across the defect. As |¢| is in-
creased, pulses rebound around the defect point. As |¢] is still
increased, the behavior of traveling pulse depends on the
sign of e. For the jump-down case (e<<0), the pulse is
trapped at the defect point and becomes an oscillatory pulse.
For further negative e, the pulse eventually settles down to a
stationary state after it hits the defect. On the other hand, for
the jump-up case (e¢>0), the rebound regime is changed to
the annihilation, which is slightly counterintuitive, because
the propagating velocity increases when the k’f is increased.
Taking a closer look at the behaviors near the boundary of
annihilation regime as shown in Fig. 7, we see that the trav-
eling pulse starts to disappear or bounce off just before it
touches the left edge of the small defect. A similar behavior
is observed in the collision process between two traveling
pulses, which typically occurs when the associated param-
eters are close to a codim 3 singularity consisting of drift,
Hopf, and saddle-node bifurcations as discussed in Ref. [26].
In view of Fig. 3(b), our parameter setting falls into the this
category and the saddle-node bifurcation is responsible for
the occurrence of annihilation, however we do not discuss
about it in this paper and delegates this issue to a future
work.

V. COLLISION DYNAMICS IS CONTROLLED
BY SCATTORS

In this subsection, we study the transitions observed in the
phase diagram of Fig. 6: first from penetration to rebound,
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FIG. 6. The (k¥,k¥) phase diagram for the responds of traveling
pulse hitting small defect pulse. There are five qualitatively differ-
ent regimes: annihilation (medium gray), rebound (light gray), pen-
etration (white), oscillatory (dark gray), and stationary (black). The
details of the pattern dynamics observed at each points marked by
white circles are described in the text. Typical spatiotemporal pat-
terns are shown in (a) annihilation for (k" ,kf):(—6.72,—6.60), (b)
rebound for (k{‘,klf)=(—6.60,—6.40), (c) penetration for (kll‘,klf)
=(=6.60,-6.64), (e) rebound for (k},k)=(-6.60,-6.72), (f) oscil-
latory pulse for (kf,kf) =(-6.50,-6.68), and (g) stationary pulse for
(K~ k) =(~6.40,-6.74).

second from stationary to oscillatory, and finally from re-
bound to oscillatory. It turns out that there appear another
type of unstable solutions called scattors which control the
behaviors of orbits upon collision with defects in a similar
manner discussed in Refs. [15,26]. Also the positions of such
scattors clarify the difference of rebound behaviors near the
jump point depending on the sign of e.

A. Transition from penetration to rebound

There are two rebound regions in the phase diagram of
Fig. 6(d), however, their behaviors are not exactly the same.
For jump-up case of €>0, the pulse bounces before reaching
the jump point as shown in Fig. 8(a), while in the jump-down
case of €<0, the pulse passes the jump point, then turns
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FIG. 7. Transition from (a) annihilation to (b) rebound occurs
around (k¥ k%)~ (=6.65,-6.486) near point A in Fig. 6(d), as k¥ is
decreased.

back as shown in Fig. 10(a). Two questions arise (i) What is
the underlying mechanism for the transition? (ii) How do we
explain the difference of rebound manners? To answer these
questions, first take a careful look at the behaviors near the
transition point B of (kt,k¥)~(-6.50,-6.359) in Fig. 6(d).
As shown in Fig. 8, the behavior of pulse changes from
penetration to rebound when k’f is slightly increased. Quite a
long transient is observed around the B point before the
pulse makes a decision in which direction to go, i.e., it re-

A
3200 3200

(a)

1600

(b)

1600

025 0.50 x 0.75

FIG. 8. Transition from rebound to penetration occurs around
(kf,klf) =~ (—6.50,-6.359) near point B in Fig. 6(d), as klf is slightly
decreased. Quasisteady pulse is observed near the transition point
for both (a) rebound and (b) penetration cases, which is located on
the left side of the defect. The profiles of scattor I and its eigen-
function ® for A=0.040836 are shown in (c) and (d). The solid,
gray, and dotted lines indicate the u, v, and w component,
respectively.
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mains as a quasisteady state for a certain time after hitting
the defect. It is numerically confirmed that, by using the
Newton method, there exists a standing pulse, named as scat-
tor I, as depicted in Fig. 8(c), whose peak position is slightly
to the left of the jump point, i.e., in the lower side of k;
parameter. By solving the linearized eigenvalue problem
LO=N\D, the scattor I has only one positive real eigenvalue
A=0.040836. The profile of the associated eigenfunction is
shown in Fig. 8(d). The stable manifold of scattor I separates
the phase space into two parts and the orbits are sorted out
according to which side of the stable manifold it belongs.
The destinations of the 1D unstable manifold are penetration
and rebound, respectively, which can be confirmed by nu-
merics as shown in Figs. 9(a) and 9(b) by adding a small
positive (negative) perturbation respectively to scattor I in
the direction parallel to the eigenmode [depicted in Fig.
8(d)]. Time evolution of the inner product (W(z,x)
—S(x),®") in Fig. 9(c) gives us useful quantitative informa-
tion to predict the fate of orbit, where W(z,x) is a solution of
Eq. (1), S(x) is the scattor I, and ®" [see Fig. 9(d)] is the
adjoint eigenfunction of \ defined by LT®"=\®". In fact we
see clearly that the inner product changes its sign after col-
lision from positive to negative as k’f is increased, which
indicates the transition from penetration to rebound. The du-
ration time how long the orbit stays near the stable manifold
of S(x) is a good indicator to detect the transition point. In
fact we plot the duration time of the orbit by the criterion
|W(t,x)—S(x)| <0.01 as a function of k¥ with &} being fixed
as —6.50. The resulting graph is shown in Fig. 9(e) and it has
a very sharp high peak at one point. Since k’f is closer to klfc,
the longer the duration time, the graph indicates that the
transition point locates at ki ~-6.35946.

Quite similarly we can find a steady pulse of codim 1
named as scattor II for the transition point C located around
(kL,k]f)z(—é.SO,—6.557). The profiles of scattor II and its
associated unstable eigenfunction are shown in Fig. 10. Fig-
ure 11 presents the outputs from the scattor II, the inner
product with the adjoint eigenfunction, and the plot of the
duration time which can be computed in a parallel way to the
case of scattor I and it indicates that the transition occurs
around k¥~ -6.557 with &} being fixed as —6.50. It should be
noted, however, that the peak location of scattor II is differ-
ent from that of scattor I, namely, it sits on the right side of
the jump point, i.e., the lower side of k;. This explains why
the pulse bounces back before (after) the jump point for posi-
tive (negative) e.

B. Global relation between defects and scattors

It is in general not so easy to obtain the unstable objects
such as scattors I and II in the previous section. The Newton
method can be applied if we have a good candidate of the
initial profile for the iteration, however, this does not always
work and hence it would be nice if we could have a more
systematic method to find such objects. One approach is a
continuation method by using path-tracking software such as
AUTO [39], which allows us to detect the steady states glo-
bally with respect to the parameters.
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FIG. 9. Outputs from scattor I for (kL,kIf)% (-6.50,-6.359) of
point B in Fig. 6(d). (a) Response of scattor by adding a small
negative perturbation in direction of ®. (b) Response of scattor by
adding a small positive perturbation in direction of ®. (¢) Time
evolution of the inner product {(W(t,x)—S(x),®") for rebound (pen-
etration) behavior is indicated by the dark (dotted) line. The gray
line indicates the associated evolutions of the distance
|W(t,x)—S(x)| between the orbit and scattor. (d) The profile of ad-
joint eigenfunction ®, the solid, gray, and dotted lines correspond
to the u, v, and w component. (¢) Time duration when
[W(z,x)—-S(x)| <0.01 for the k¥ value.

Starting from a stable large (or small) defect, we can trace
the steady pulse solutions with respect to the height of the
jump of e=kf—k¥. Figure 12(a) shows the resulting global
bifurcation diagram of steady pulse branches with respect to
€ with k- being fixed as k-=—6.50. The solid lines represent
stable solutions and gray lines for unstable ones, in fact these
are the continuation of large and small defects discussed in
Secs. IV and V. The large stable defect (upper-left branch)
decreases its amplitude as € is increased and is destabilized
via the Hopf bifurcation before crossing the another defect
branch coming from the right side. The difference between
the left and right defect branches is the location of peak,
namely, the peak location of the pulse on the left (right)
branch sits on the left (right) side of the jump point as is
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FIG. 10. Transition from rebound to penetration occurs around
(k% k%) =~ (~6.50,-6.557) near point C in Fig. 6(d), as k¥ is slightly
increased. Quasisteady pulse is observed near the transition point
for both (a) rebound and (b) penetration cases, which is located on
the right side of the defect. The profiles of scattor II and its eigen-
function ® for A=0.026259 are shown in (c¢) and (d). The solid,
gray and dotted lines correspond to the u, v, and w components,
respectively.

shown in Fig. 12(a) in which the profiles of the u component
are depicted along the branch. These branches have two
crossing points at e=0 where two types of solutions take
exactly the same profiles as those for the homogeneous sys-
tem in Sec. III. It is conformed numerically that the peak
positions of defects move to the center of the domain in the
limit of €e— 0.

The spectral behavior along the upper-left defect branch
after the Hopf bifurcation is the following: a pair of complex
eigenvalues falls on the real axis and split into two simple
real eigenvalues, then one of them approaches to origin as €
is increased and becomes zero translation eigenvalue at e
=0. It crosses the origin when € becomes positive, therefore
there is only one positive real eigenvalue around the star
point in Fig. 12(a). It turns out that the defect solution of
codim 1 at the star point coincides with scattor I of Fig. 8(c).
In exactly the same manner, the defect solution of codim 1
located at another star mark coincides with scattor II of Fig.
10(c), therefore scattors are a part of the global defect
branches with respect to €.

C. Transition from stationary to oscillatory pulse

When the height of the jump becomes negatively large,
there appear two regions: oscillatory and stationary ones as
shown in Figs. 6(f) and 6(g). The orbit settles down to an
ordered pattern after encountering the defect in these regions.
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FIG. 11. Outputs from scattor IT for (kll‘,klf) =~ (-6.50,-6.557) of
point C in Fig. 6(d). (a) Response of scattor by adding a small
negative perturbation in direction of ®. (b) Response of scattor by
adding a small positive perturbation in direction of ®. (¢) Time
evolution of the inner (W(z,x)—S(x),®") for rebound (penetration)
is indicated by the dark (dotted) line. The gray line indicates the
associated evolutions of the distance |W(z,x)—S(x)|. (d) The profile
of adjoint eigenfunction ®". The solid, gray and dotted lines corre-
sponds to the u, v, and w component, respectively. (¢) Time dura-
tion when |W(z,x)—S(x)| <0.01 for the k’f value.

The evolutional behaviors in each region are depicted in
Figs. 13(a) and 13(b). Figure 13(c) plots the position of their
pulse peaks. This strongly suggests the emergence of attrac-
tors sitting around the jump point. By tracing the defect
branch near the Hopf point in Fig. 12(a), such attraction are
detected as in the magnified bifurcation diagram of Fig.
13(d). The solid line and filled circles indicate stable steady
pulse and stable oscillatory pulses of left-right type emerging
via supercritical Hopf bifurcation at the white square in the
magnified diagram. The location of the onset of supercritical
Hopf bifurcation coincides with that of the transition point
from stationary to oscillatory regimes. The boundary be-
tween those regions in Fig. 6 is therefore characterized by
the Hopf bifurcation line. How about the transition from os-
cillatory to rebound? The periodic branch has a saddle-node
point around k; =-0.17, which is approximately equal to the
transition point from oscillatory to rebound regime. The af-
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FIG. 12. Global bifurcation diagram for defect pulses for het-
erogeneous media with kll‘=—6.50. Solid stars correspond to the
codim-1 scattors observed at the points B and C, where e=~-0.04
and 0.13, respectively. The bifurcation parameter (horizontal axis)
is € with the parameters being fixed the same as in Fig. 3. The
profiles of the u component and schematic behaviors of their eigen-
values are depicted along the branch. The locations of pulse peak on
the left and right defect branches are different except at e=0. The
profiles of the Hopf eigenfunction ® of the left-right type for the
Hopf point [€=-0.230 denoted by the white square in (a)] are
depicted in (b). The associated eigenvalue is A==0.038i. The solid,
gray and dotted lines in (b) correspond to the u, v, and w compo-
nent, respectively.

tereffect of the saddle-node point (i.e., temporal oscillation)
is, however, not observed even when the parameter is close
to the saddle-node point, and a quasisteady state is observed
instead as in Fig. 14. This quasisteady state is not captured
by the Newton method at present, therefore it is not clear
whether the saddle-node point is responsible for the transi-
tion or some other basin-switching mechanism should be
taken into account.

VI. ORGANIZING CENTER FOR THE
HETEROGENEOUS SYSTEM

One of the main objectives in this paper is to show that
traveling pulses, defects, and scattors are the parts of one
global branch of an ordered pattern with respect to the pa-
rameters k;, 7, and €. They are not separated in a generalized
phase space including the parameter space, in fact we already
observed in the previous section that scattors can be obtained
by continuating the defect branch as € is varied. This view
point leads us to try to find a kind of organizing center which
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FIG. 13. Transition occurs from (a) stationary (k’f =-6.74) to (b)
oscillatory (kf=-6.72) as k¥ is increased with k% being fixed to be
—6.50. Time evolutions of location of peaks for (a) and (b) are
shown in (c). (d) Magnified bifurcation diagram of the upper-left
defect branch in Fig. 12(a). The oscillatory defect branch is shown
by filled circles.

produces all the above patterns by unfolding appropriate pa-
rameters. In this section we present a partial answer to this
question.

Recall that standing pulses for homogeneous media can
be obtained in the limit of e—0 as in Fig. 12(a). It is inter-
esting to see how this global structure is deformed as kf is
decreased. Figure 15(a) shows the global bifurcation diagram
for defect patterns at kf =-6.80. The white squares represent
the Hopf bifurcation points. A remarkable thing is that two
saddle-node points of left and right defect branches coincide
each other at €=0.0 designated by a filled circle. Schematic
behaviors of linearized eigenvalues are also depicted along
the large defect branch in which the attached numbers show
the number of unstable eigenvalues. In view of the upper-left

A
4000

1600

(a)

FIG. 14. Transition from (a) rebound to (b) oscillatory occurs
around (le,kf) ~(-6.50,—-6.677) near point D in Fig. 6(d), as k’f is
decreased.

PHYSICAL REVIEW E 75, 036220 (2007)

0.68
L2

0.64

0.60

0.56

0.25 0.50 x 0.75
+ P,
L e w "'t:"'/'": ------------
0.25 . 0.75
+ D5
oo J O A —
f 0.25 0.75
b)

FIG. 15. (a) Global bifurcation diagram for defect pulses for
heterogeneous media with kE=—-6.80. The profiles of the u compo-
nent and schematic behaviors of their linearized eigenvalues are
depicted along the upper-left branch. Two pairs of complex eigen-
values fall on the real axis and split into four simple real eigenval-
ues (see upper-right inlet), then one of the real eigenvalues of left-
right type (filled circles) with eigenform ®; approaches the origin
as € is increased and becomes zero translation eigenvalue at e=0.
The two positive real eigenvalues and one negative eigenvalue
closer to the origin in the upper-right inlet at e=—1.0X 107 are
given by A;=0.227, \,=0.007, and A3=-0.003. The profiles of the
associated eigenfunctions @, ®,, and @5 are depicted in (b). Note
that ®; (i=1,2) inherits the property of symmetry-preserving (up-
down) motion and ®; does that of symmetry-breaking (left-right)
one. The solid, gray and dotted lines correspond to the u, v, and w
component, respectively.

spectral distribution in Fig. 15(a), there are two types of
complex eigenvalues with different profiles of their eigen-
forms: white and filled circles. The white one turns out to
have a symmetry-preserving eigenmode (up-down) and the
filled one is of symmetry-breaking type (left-right) as in Fig.
15(b). It should be noted that the type of primary Hopf bi-
furcation is changed from left-right (filled circle) to up-down
(white circle) as kf is decreased from —6.50 to —6.80 as
shown in Figs. 12(a), 15(a), and 16(c). These two complex
eigenvalues fall onto the real axis as € becomes closer to zero
and each one of them reaches the origin in the homogeneous
limit of e=0. More precisely, one of the filled circles (de-
noted by \;) becomes the translation zero eigenvalue (sym-
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FIG. 16. (a) Global bifurcation diagram for defect pulses in
heterogeneous media for k=-7.0. We use e=kX—k as the bifur-
cation parameter. The white squares represent the Hopf bifurcation
points. The profiles of the u component are depicted along the
branch. Note that the e=0 corresponds to the case of homogeneous
media as indicated by the white circle. (b) Global structure of defect
branches with respect to I(f and €. The cross section at e=0 (dotted
line) coincides with the branch of the standing pulse solutions for
homogeneous media in Fig. 3(b). There are two different types of
Hopf instabilities on the upper defect branches of Taurus shape
depicted in (c): one is left-right type (filled square) and the other is
up-down (white square). Each square shows the onset of Hopf in-
stability, which is obtained by projection from upper defect branch
to (kb e) plane. There occurs a crossover around kf~—6.80 from
left-right type to up-down one as kf is decreased.

metry breaking) and one of the white circles (\,) crosses the
origin due to the saddle-node bifurcation (symmetry preserv-
ing). In fact, as depicted in Fig. 15(b), the eigenfunctions ®,
and @, suggest an up-down motion, while the @5 implies the
translation of a left-right direction.

As kf is still decreased, we have a diagram such as Fig.
16(a) for k¥=—7.0. Integrating the diagrams in Figs. 12(c),
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15(a), and 16(a), the whole structure of the defect patterns
with respect to k; and € forms a surface similar to the horns
of Taurus as shown in Fig. 16(b). It should be noted that the
small defect branch (the bottom part of Taurus) is always
stable and coincides with the homogeneous constant state at
€=0. The branch of standing pulses for the homogeneous
media in Fig. 3(b) can be recovered as the cross section at
€=0 of the Taurus surface (see the dotted curve). The saddle-
node point of the standing pulse branch in Fig. 3(b) is em-
bedded at (kf ,€) =~ (—-6.80,0.0) denoted by the filled circle.
For larger kf values than —6.80, the defect pulse surface has
two intersecting points with the standing pulse branch for
each kf on the €=0 plane as indicated by the white circles in
Fig. 16(b). Recalling that traveling pulses emanate from the
standing branch via drift bifurcation and scattors are embed-
ded as solutions in the unstable part of the defect surface, we
see that all the relevant solutions can be obtained by
continuation starting from the saddle-node point located at
(kk, €)= (~6.80,0.0). One may call such a point an organiz-
ing center for the whole heterogeneity-induced bifurcation
including traveling pulses, although two more unfolding pa-
rameters in addition to kf may be necessary to reduce the
whole structure to one point of higher singularity.

Finally it should be noted that such a heterogeneity-
induced Taurus structure is not only useful to explain the
pulse dynamics discussed above, but also gives us insight
into various types of complex dynamics created by heteroge-
neities, for instance, to predict the onset of the pulse genera-
tor discussed in the next section (see Fig. 17).

VII. CONCLUSION

We studied the dynamics of traveling pulses in a hetero-
geneous media generated by a steplike forcing. The model
system studied here is the three-component reaction diffu-
sion system of Eq. (1) of monostable type. Unlike the het-
erogeneous Gray-Scott model in which heterogeneity is in-
troduced in a multiplicative way (see Ref. [36] for details),
the inhomogeneous term k;(x) for Eq. (1) changes the back-
ground constant state. This induces a variety of new patterns
connecting the left value k% of the step to the right one k.
We call such heteroclinic solutions as defects. The set of
defects forms a Taurus-shaped branch with respect to k; and
the height e=kf -k}, and it deforms continuously as a func-
tion of le as presented in Fig. 16. The Taurus basically con-
sists of three parts: a small defect that is a continuation of the
constant state for homogeneous case, a large defect that cre-
ates traveling pulses via drift bifurcation, and an unstable
part connecting small and large defects. These defects are
produced by heterogeneities. The theme of this paper is to
study the response of a traveling pulse when it encounters a
small defect. Note that small defect always exits as a stable
stationary state near e=0. The pulse can go across the defect
for small |€|, however, it starts to rebound as |e become
larger as shown in Fig. 6. A remarkable thing is that the
unstable part of the defect branch plays the role of separators
at the boundary of penetration and rebound regions, namely,
there exists a defect of codim 1 at each point of the boundary
and the behavior of the orbit is determined by which side of
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FIG. 17. (a) Spatiotemporal patterns of pulse generator when
kf=—6.5, kf=—6.1, and 7=50.0. The profiles of the unstable small
defect pulse and its up-down type eigenfunction are depicted in (b)
and (c), respectively. The corresponding eigenvalue is \
=0.013+£0.100i. The solid, gray, and dotted lines in (b) and (c)
correspond to the u, v, and w component, respectively.

the stable manifold of the defect it passes. This is exactly the
same type of structure we found for the collision process
among pulses and spots [14,15,40]. The unstable objects
called scattors play the same role as the above defects. This
may not be a surprising thing, because propagation in het-
erogeneous media can be regarded as a collision process be-
tween traveling pulse and defect. It should be noted that the
viewpoint of unstable objects such as scattors is also useful
to understand a different type of complex dynamics such as
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chaotic transitions discussed in Ref. [41]. When € is varied in
a negative direction (the lower-right part of Fig. 6), the large
defect pulse recovers its stability via Hopf bifurcation [see
Fig. 13(d)], and therefore the traveling pulses are trapped by
either stable large defect or oscillatory defect. On the other
hand, when € is increased (the upper-left part of Fig. 6),
annihilation regime appears. In view of the fact that k’f be-
comes closer to the codim three-singularity consisting of
drift, Hopf, and saddle-node bifurcations on the branch of
standing pulses for the homogeneous media as in Fig. 3, it is
plausible that a similar mechanism discussed in Ref. [26]
causes annihilation. The detailed mechanism of this annihi-
lation process is rather complicated, so we will discuss it
elsewhere.

The parameter 7 has been fixed to be 40.0 in this paper,
however, when 7 becomes larger, we observe various types
of complicated behaviors. In fact, for kf=—6.50, €=0.40, and
7=50.0, in which there are no stable defects, the pulse gen-
erator is observed as in Fig. 17 near the inverted Hopf bifur-
cation of small defect. The small defect oscillates up and
down and simultaneously it emits traveling pulses periodi-
cally. In view of the global structure of defect branch, the
onset of such pulse generator is closely related to the disap-
pearance of stable defects, depending on the positional rela-
tion of two Hopf points on small and large defect branches.
Pulse generator for Gaussian type heterogeneity was found
in Ref. [37], which emits pulses on both sides. From math-
ematical view point, this generator can be regarded as a het-
eroclinic orbit connecting unstable oscillation of small defect
and wave train of large defects, which may fall in a category
discussed in Ref. [42]. Based on the results obtained here, it
seems possible to extend our approach to the spatially local-
ized heterogeneities such as bump or Gaussian distributions.
For more general heterogeneity like spatial periodic or ran-
dom case, it would be desirable to reduce PDE dynamics to
ODE ones as was done in Ref. [36], in which the effect of
heterogeneity is expected to appear in an integral form. We
will discuss more about it in a forthcoming paper.
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